Growth and optical property characterization of textured barium titanate thin films for photonic applications

نویسندگان

  • Matthew J. Dicken
  • Kenneth Diest
  • Young-Bae Park
  • Harry A. Atwater
چکیده

We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers. r 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDY OF THICKNESS DEPENDENT CHARACTERICTICS OF Cu2S THIN FILM FOR VARIOUS APPLICATIONS

Abstract: Different thickness of Cu2S thin films were prepared by vacuum evaporation under a pressure of 10-6 torr at an evaporation rate of 3Å /sec. Cu2S has direct band gap energy and indirect band gap energy at 1.2eV and 1.8 eV respectively. This paper presents the analysis of structural and optical properties of the Cu2S thin film by X-ray diffractometer (XRD) and UV-Vis-NIR Spectrophotomet...

متن کامل

Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba₀.96Ca0.04Ti0.82Zr0.18O₃ (BCZTO) target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Film texture and cryst...

متن کامل

Studies on Structural and Optical Characterization of In-Zn-S Ternary Thin Films Prepared by Spray Pyrolysis

Thin films of indium doped zinc sulfide (ZnS) for different indium (In) concentrations (x=0.0 - 0.8) were deposited onto glass substrate by spray pyrolysis method at 523K temperature. Aqueous solution of zinc acetate, indium chloride and thiorea were used to deposit the In-Zn-S film. The deposited thin films were characterized by Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM)...

متن کامل

تأثیر فرایند سینتر بر خواص الکتریکی و ریزساختاری تارگت کند‌و‌پاش و لایه‌ی نازک باریوم استرانسیوم تیتانات

In this study the effect of sintering parameters on the microstructure and electrical properties of the barium strontium titanate sputtering target is investigated. For optimizing the sintering temperature, BST compacts sintered at various temperatures ranging from 1200 to 1400 ºC for 2 hours. The sintered Barium Strontium Titanate sputtering target comprising with a high density, purity and a ...

متن کامل

Growth and Characterization of Thin MoS2 Films by Low- Temperature Chemical Bath Deposition Method

Transition metal dichalcogenide (TMDC) materials are very important inelectronic and optical integrated circuits and their growth is of great importance in thisfield. In this paper we present growth and fabrication of MoS2 (Molibdan DiSulfide)thin films by chemical bath method (CBD). The CBD method of growth makes itpossible to simply grow large area scale of the thin la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006